p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.35D8, C24.154D4, C23.32SD16, D4⋊3(C22⋊C4), C4.52C22≀C2, (C2×D4).263D4, (C22×D4)⋊17C4, (C22×C8)⋊2C22, (D4×C23).4C2, C22.30(C2×D8), C2.1(C22⋊D8), C23.737(C2×D4), (C22×C4).262D4, C23.7Q8⋊3C2, C22⋊3(D4⋊C4), C2.1(C22⋊SD16), C22.72C22≀C2, C22.44(C2×SD16), C2.11(C24⋊3C4), C22.57(C8⋊C22), (C23×C4).231C22, C23.194(C22⋊C4), (C22×C4).1320C23, (C22×D4).452C22, C2.17(C23.37D4), (C2×C4⋊C4)⋊3C22, C4.1(C2×C22⋊C4), (C2×D4⋊C4)⋊1C2, (C2×C22⋊C8)⋊11C2, (C2×D4).200(C2×C4), C2.17(C2×D4⋊C4), (C2×C4).1310(C2×D4), (C22×C4).260(C2×C4), (C2×C4).358(C22×C4), (C2×C4).119(C22⋊C4), C22.239(C2×C22⋊C4), SmallGroup(128,518)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.35D8
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=c, dad-1=eae-1=ab=ba, ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 1052 in 424 conjugacy classes, 84 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C22⋊C8, D4⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C23×C4, C22×D4, C22×D4, C25, C23.7Q8, C2×C22⋊C8, C2×D4⋊C4, D4×C23, C23.35D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, D4⋊C4, C2×C22⋊C4, C22≀C2, C2×D8, C2×SD16, C8⋊C22, C24⋊3C4, C2×D4⋊C4, C23.37D4, C22⋊D8, C22⋊SD16, C23.35D8
(1 22)(2 28)(3 24)(4 30)(5 18)(6 32)(7 20)(8 26)(9 17)(10 31)(11 19)(12 25)(13 21)(14 27)(15 23)(16 29)
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 30)(18 31)(19 32)(20 25)(21 26)(22 27)(23 28)(24 29)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 28 22 15)(2 14 23 27)(3 26 24 13)(4 12 17 25)(5 32 18 11)(6 10 19 31)(7 30 20 9)(8 16 21 29)
G:=sub<Sym(32)| (1,22)(2,28)(3,24)(4,30)(5,18)(6,32)(7,20)(8,26)(9,17)(10,31)(11,19)(12,25)(13,21)(14,27)(15,23)(16,29), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,28,22,15)(2,14,23,27)(3,26,24,13)(4,12,17,25)(5,32,18,11)(6,10,19,31)(7,30,20,9)(8,16,21,29)>;
G:=Group( (1,22)(2,28)(3,24)(4,30)(5,18)(6,32)(7,20)(8,26)(9,17)(10,31)(11,19)(12,25)(13,21)(14,27)(15,23)(16,29), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,28,22,15)(2,14,23,27)(3,26,24,13)(4,12,17,25)(5,32,18,11)(6,10,19,31)(7,30,20,9)(8,16,21,29) );
G=PermutationGroup([[(1,22),(2,28),(3,24),(4,30),(5,18),(6,32),(7,20),(8,26),(9,17),(10,31),(11,19),(12,25),(13,21),(14,27),(15,23),(16,29)], [(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,30),(18,31),(19,32),(20,25),(21,26),(22,27),(23,28),(24,29)], [(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,28,22,15),(2,14,23,27),(3,26,24,13),(4,12,17,25),(5,32,18,11),(6,10,19,31),(7,30,20,9),(8,16,21,29)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2S | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D4 | D8 | SD16 | C8⋊C22 |
kernel | C23.35D8 | C23.7Q8 | C2×C22⋊C8 | C2×D4⋊C4 | D4×C23 | C22×D4 | C22×C4 | C2×D4 | C24 | C23 | C23 | C22 |
# reps | 1 | 1 | 1 | 4 | 1 | 8 | 3 | 8 | 1 | 4 | 4 | 2 |
Matrix representation of C23.35D8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 5 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 14 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 16 |
0 | 0 | 0 | 0 | 1 | 6 |
3 | 3 | 0 | 0 | 0 | 0 |
3 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 1 |
0 | 0 | 0 | 0 | 16 | 11 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,5,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,0,9,0,0,0,0,2,0,0,0,0,0,0,0,11,1,0,0,0,0,16,6],[3,3,0,0,0,0,3,14,0,0,0,0,0,0,0,8,0,0,0,0,2,0,0,0,0,0,0,0,6,16,0,0,0,0,1,11] >;
C23.35D8 in GAP, Magma, Sage, TeX
C_2^3._{35}D_8
% in TeX
G:=Group("C2^3.35D8");
// GroupNames label
G:=SmallGroup(128,518);
// by ID
G=gap.SmallGroup(128,518);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,2019,1018,248]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations